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Abstract
On the basis of a ladder-diagram approximation, we study the pairing-
fluctuation effect in d-wave superconductivity. The single particles and pairs
are treated on an equal footing. In the superconducting state, the predominant
pairing fluctuation is due to the excitation of pairs to the states of the Goldstone
mode. These bosonic degrees of freedom are relevant to the pseudogap physics
in high-Tc cuprates. The Green function of electrons is obtained as an analytic
solution to a cubic equation. The superconducting order parameter and the
transition temperature are substantially reduced from the values of the mean-
field theory. The calculated phase boundary of the superconductivity can
reasonably describe the experiment results for cuprates.

The pairing-fluctuation effect plays an important role in describing the superconductivity of a
quasi-two-dimensional (quasi-2D) superconductor with low carrier density [1], as it prohibits
off-diagonal long-range ordering in systems of dimensions �2 [2]. The superconducting order
parameter and thereby the transition temperature Tc can be considerably reduced from the
values given by the mean-field theory (MFT). For underdoped high-Tc cuprates (HTC), Emery
and Kivelson have argued that the long-range classical phase fluctuation can substantially
suppress the transition temperature Tc [3]. Above Tc, pairing becomes local without long-
range phase coherence. On the other hand, since there are preformed pairs above Tc, the
superconductivity below Tc can be viewed as a consequence of Bose–Einstein condensation
(BEC) [4–6]. Along with this approach, much effort has been devoted to investigation of
the crossover from the weak-coupling BCS superconductivity to the BEC of bound pairs [7–
18]. Most of the work has been performed for s-wave pairing because of its computational
simplicity.

Here we note that according to the general theory of Goldstone et al [19] there exists
a Goldstone mode in the broken-symmetry state of systems without long-range interaction.
Since the states of this mode are the lowest excited states for the pairs, the excitations of pairs to
these states are the most predominant fluctuations. For quasi-2D systems at finite temperature,
the fluctuations can be equally significant as the mean-field ordering. Because the Goldstone
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mode coexists with the coherent pairing and may not be regarded as a perturbation in quasi-
2D systems, treatment of the single particles and the collective modes on an equal footing is
therefore desirable.

In this paper we intend to present a Green function approach to treat the pairing-fluctuation
effect. In the present approach, the Green functions of the single particles and the pairs are
self-consistently determined by a number of coupled integral equations. We find that BEC
from single pairs begins to occur at Tc, but below Tc, with the condensation taking place, the
single pairs begin to move collectively. Even at the ground state there remains zero-point
motion. These bosonic degrees of freedom are relevant to the pseudogap physics in cuprates.
For details of this work readers are referred to [20].

The Hamiltonian of the electron system is given by

H =
∑
kα

ξkc†
kαckα +

1

N

∑
kk′q

vkk′ p†(k, q)p(k ′, q) (1)

where c†
kα (ckα) is the creation (annihilation) operator for electrons with momentum k and spin

α, ξk = −2t (cos kx +cos ky)−2tz cos kz −µ with µ the chemical potential, N the total number
of lattice sites, vkk′ = −vηkηk′ with ηk = cos kx − cos ky, and p(k, q) = c−k+q/2↓ck+q/2↑ is
the pair operator. To take into account the constraint of no double occupation on the same
site by the t–J model, the hopping integrals t and tz are assumed to be proportional to the
hole concentration δ, e.g. t = t0δ with t0 a constant [21]. For the quasi-2D system, tz/t � 1
is supposed. This model has been adopted by a number investigators for studying d-wave
superconductivity as well as the pseudogap phenomenon in cuprates [13–15, 22].

In Nambu’s representation, the Green function G(k, zn) of the electrons is given by

G(k, zn) = [zn − ξkσ3 − �(k, zn)]−1 (2)

where zn = i(2n +1)πT , n is an integer, T the temperature and σ the Pauli matrix. Throughout
this paper we use the units in which h̄ = kB = 1. To express the self-energy, we first note
that the off-diagonal part comes from the averaged boson fields of momentum q = 0. In the
superconducting state, 〈p(k, 0)〉 is a macroscopic quantity compared with all other pair fields
elsewhere. Therefore, the predominant contributions are the static mean field

�12(k, zn) = 1

N

∑
k′

vkk′ 〈p(k ′, 0)〉 ≡ �k . (3)

For our uniform system, we suppose �k is real. The quantity �k ≡ �ηk should be
differentiated from that of the MFT since the fluctuation effect is under consideration in the
present Green function. Secondly, we take into account the pair fluctuation terms q �= 0 of
the interaction in the diagonal part. By the ladder-diagram approximation, the diagonal part
of the self-energy is given by

�µµ(k, zn) = − T

N

∑
qm

v2η2
k−q/2 Gµ̄µ̄(k − q, zn − Zm)	µµ(q, Zm) (4)

where Zm = i2mπT , m is an integer, µ = 1, 2 with 1̄ = 2 and 2̄ = 1, and the pair propagator
	(q, Zm) is given by

	(q, Zm) = [1 + vχ(q, Zm)]−1χ(q, Zm) (5)

where 	 and χ are 2 × 2 matrices, with the elements of χ defined by

χµν(q, Zm) = T

N

∑
kn

η2
k Gµν(k + q/2, zn + Zm)G ν̄µ̄(k − q/2, zn). (6)
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The chemical potential µ is determined by

2T

N

∑
kn

G11(k, zn)e
znη = 1 − δ (7)

where η is an infinitesimal positive number. These equations (2)–(7) form the closed system
that self-consistently determines the Green functions.

Two points about the present formalism need to be emphasized. First, the existence of
the Goldstone mode in the superconducting state requires that the pair susceptibility χ(q, Zm)

should satisfy the condition [19]

det |1 + vχ(0, 0)| = 0. (8)

This equation is exactly consistent with equation (3). Any improper treatment of off-diagonal
self-energy leads to violation of this consistency. At Tc, equation (8) reduces to the Thouless
criterion [23]. Secondly, because of equation (8), the pair propagator 	µµ(q, Zm) has a
singularity at q → 0 and Zm = 0, and thereby the diagonal self-energy takes into account the
predominant fluctuation effect.

It is a tremendous task to numerically solve equations (2)–(7) because many multi-
dimensional integrals over the momentum and the summation over the Matsubara frequency
need to be computed in each iteration. However, since 	(q, Zm) is strongly peaked with
a divergence at q → 0 and Zm = 0, the diagonal self-energy can be approximately given
by [14, 24]

�µµ(k, zn) ≈ �2η2
k Gµ̄µ̄(k, zn) (9)

with

�2 = − T v2

N

∑
qm

′	µµ(q, Zm)eαµ Zmη (10)

where
∑′ means the summation over q runs over small q , and the convergent factor eαµ Zmη

with α1 = 1 and α2 = −1 has been introduced. This convergent factor comes from the fact
that the Green function Gµ̄µ̄(k − q, zn − Zm) in the summation in equation (4) is connected
with the effective interaction v2	µµ(q, Zm). At small q and Zm , the pair propagator can be
approximated by the collective modes. At T < Tc, the collective modes are sound-like waves
with energy q ∝ q , while at Tc, q ∝ q2, the excitations are single pairs. The constant �2

is essentially a measure of the density of these uncondensed pairs. � is called the pseudogap
parameter since at Tc there remains a gap in the density of states (DOS) at the Fermi energy.
The q-integral in equation (10) is over a cylindrical region in the momentum space. Since q

depends weakly on the out-of-plane wavenumber qz , the integral over qz can be taken in the
range (−π, π). The cut-off qc for the in-plane wavenumber is determined such that the largest
in-plane energy qc = 2

√
�2 + �2, since the collective mode is meaningful only within the

gap.
Now, note that two equations from the diagonal parts of equation (2) with �µµ given

by equation (9) form the closed system for determining the diagonal Green functions. By
eliminating one of them, we can obtain a cubic equation for G0 or G3. By introducing a
function y(k, zn), the Green function is obtained as

G(k, zn) = [zn + 3�kσ1/(1 + y) + ξkσ3](2 − y)/3�2
k (11)

where �k = �ηk . The function y(k, zn) is a real root of the cubic equation

y3 − 3Py − 2Q = 0 (12)
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where P = 1 + 3(�2
k − �2

k)/(ξ
2
k − z2

n) and Q = 1 + 9
2 (�2

k + 2�2
k)/(ξ

2
k − z2

n). The explicit form
of y(k, zn) reads

y =
{

3

√
Q +

√
D +

3

√
Q − √

D, D > 0

2
√

P cos(ϕ/3), D < 0
(13)

where D = Q2−P3 and ϕ = arccos(Q/
√

P3). The boundary condition y → 2+3�2
k /(ξ

2
k −z2

n)

at |zn| → ∞ is useful for analytic continuation to the real frequency zn → ω + iη.
To describe the cuprates, we take v/2t0 � 0.1 and tz/t � 0.01 [14]. For La2CuO, v �

0.13 eV has been determined by experiments [25]. Therefore, our choice of v/2t0 corresponds
to t0 � 0.65 eV, which is consistent with estimates from experimental data [14, 26]. The small
quantity tz/t describes the interlayer weak coupling and gives rise to a z-freedom energy in
q . This weak coupling prevents the summation over q in equation (10) from a logarithm
divergence at the q = 0 limit and ensures a finite transition temperature Tc.

The result for Tc as a function of hole concentration δ (solid curve) is plotted in figure 1.
The MFT result (with the same scale as the present theory) and the experiment data [27] are also
shown for comparison. The maximum transition temperature Tc,Max ≈ 0.015 75t0 ≈ 118 K
obtained by the present calculation appears at a certain δ between 0.125 and 0.15. In the
optimally doped to overdoped region, the present theory fits the experimental data very well.
In the underdoped region, the reduction of Tc from the MFT value is significant; in contrast to
the MFT, the present Tc increases with δ. To see how the fluctuations occurring primarily in
the diagonal part of the self-energy reduce Tc, we consider the gap equation

vT

N

∑
kn

η2
k

(ξk + �3)2 − (zn − �0)2
= 1 (14)

where the � are the Pauli components of the self-energy. At small δ, |ξk + �3| ∝ δ, the
predominant contribution to the denominator in equation (14) comes from the term−(zn−�0)

2.
Since |zn −�0| = |zn −G0�

2
k | > |zn| = (2n +1)πT , Tc should be reduced to keep the equality

of equation (14).
There is still an obvious discrepancy between the present theory and the experiment at

small δ. This may be a result of the crude treatment of the short-range pair correlations.
Local pairing without long-range phase coherence is not fully taken into account in the present
model. Besides this, the short-range antiferromagnetic coupling is not correctly accounted for.
To describe the antiferromagnetism in cuprates at very small δ, one needs to restart with the
t–J model. In addition, long-range Coulomb interaction may also take effect if there is no
adequate screening.

The reduction of Tc from its MFT value stems from the fact that some of the pairs occupy
low-lying excited states. As mentioned above, the density of these pairs is measured by �2. In
figure 2, the result for the pseudogap parameter � at Tc is compared with the MFT �M F (Tc)

as well as the pseudogap energy Eg determined by experiments [28]. The experimental
observations indicate that Eg depends slightly on T above Tc [29]. We plot here the result
for Eg to view the overall magnitudes only. The parameter �, similar to �M F (Tc), decreases
monotonically with δ. The larger ratio �/�M F (Tc) at smaller δ implies a larger occupation
of the uncondensed pairs. This is consistent with the more significant reduction of Tc in the
underdoped region.

In figure 3 we show the numerical results for � and � as functions of T at δ = 0.1. The
superconducting gap opens below Tc and reaches its maximum at T = 0. The parameter �

decreases with decreasing T and remains finite at T = 0. In the ground state, the fluctuation
effect comes mainly from the zero-point motion (quantum fluctuation) of the pairs. Generally
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Figure 1. Tc as a function of δ. The solid and dashed curves represent the results of the present
approach and the MFT respectively. The symbols indicate the experimental data for cuprates [27]:
Y1−x Cax Ba2Cu3O6 (solid squares), Y0.9Ca0.1Ba2Cu3O7−y (open squares), La2−x Srx CuO4 (open
diamonds), Y1−x Cax Ba2Cu3O6.96 (solid diamonds) and YBa2Cu3O7−y (open circles).

Figure 2. Pseudogap parameter � (solid curve) and order parameter �M F (dashed curve, by the
MFT) as functions of hole concentration δ at Tc. The symbols represent the pseudogap energy Eg

for cuprates determined by experiments [28].

speaking, in a quasi-two-dimensional system, the order parameter of the broken-symmetry
state can be considerably suppressed by the quantum fluctuation. This can also be confirmed
by the perturbation calculations [30–33]. The Chicago group [13–15] has treated the bosonic
degrees of freedom by a different ladder-diagram approach. By their theory, the uncondensed
pairs are single pairs with energy q ∝ q2, and complete condensation takes place at T = 0.
This is the familiar BCS–BEC crossover picture. By the present treatment, the ladder diagrams
for the self-energy are symmetric with all the Green functions renormalized. In contrast to the
result of the Chicago group, the present approximation for the self-energy takes into account
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Figure 3. Superconducting order parameter � and pseudogap parameter � as functions of
temperature T at δ = 0.1. The order parameter �M F given by the MFT is also plotted for
comparison.

Figure 4. DOS ρ(E) at T/Tc = 0.2 and 1. The hole concentration is δ = 0.1.

the contribution from the Goldstone modes. In the ground state, especially, there are zero-point
motions of these collective modes. Because the pairs occupying these modes do not contribute
to the condensation, the superconducting order parameter is reduced even at the ground state.

Shown in figure 4 are the results for the dimensionless DOS of electrons,

ρ(E) = −2t
∑

k

Im G11(k, E + iη)/π N

at δ = 0.1 and T/Tc = 0.2 and 1. ρ(E) depends on E linearly at small E . This is in
the character of the d-wave gap. In contrast to the well-known MFT, the peaks in the DOS
are broadened even at T < Tc due to the fluctuation effect. The reason is that the pairing
fluctuation introduces a certain lifetime to the single quasiparticles. The width scales with
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�. At Tc, ρ(E) still shows the existence of the d-wave gap with a magnitude of about 2�.
That is the pseudogap. To understand the pseudogap better, we consider the spectral function

at Tc, A(k, E) =
√

(ξ2
k + 4�2

k − E2)/(E2 − ξ2
k )(E + ξk)/2π�2

k which is non-zero only for

E2 − 4�2
k < ξ2

k < E2, with the non-interacting delta-function peak becoming a square root
singularity. Near the Fermi energy, the k-space is constrained so that the volume decreases at
E → 0, resulting in a suppression of DOS at the Fermi energy. This leads to the formation of
a pseudogap in the DOS.

In summary, we have investigated the superconductivity in the tight-binding model with
d-wave attraction. The analytic Green function is given by equation (13). The low-lying
collective modes are treated as the predominant long-range pairing fluctuation in the self-
energy. The pairing fluctuation results in a lifetime effect for single particles below Tc and
a pseudogap in the DOS at Tc. The transition temperature is substantially suppressed from
its mean-field value. The phase boundary of superconductivity given by the present theory is
close to the experimental results for the cuprates.

This work was supported by NSF of China (GN 10174092) and the Ministry of Science and
Technology of China (G1999064509).
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